Tax Fraud and Investigations
– everybody, everywhere, everytime

Hans - J. Lenz
Inst. f. Statistik und Ökonometrie
Freie Universität Berlin

First comes the Food
and later the Profit.
B. Brecht
Agenda

- Actors, sparse Data, Roles
- Sparsity and Plausibility of data
- Framework of a model driven Tax Investigation – step by step
- Investigation Procedures
- Case Studies of Tax Fraud
- Perspectives
I Actors

Quellen: https://www.google.de/search?q=deutsche+steuerbetr%C3%BCger&source=lnms&tbm=isch&sa=X&ei=qU_4VPfvH8XlUrzhgeAP&ved=0CAkQ_AUoAw&biw=1024&bih=642

© HJLenz (2015)
Actors, Roles (cont.)

Defrauder

debts, penalty

Income and Assets

Bank account statements, Insurance policies, Notations, Safe

Life style

Spouse (Revenge)

Neighbor (frustrated)

Business partner (dispute)

Tax investigator, excise officer

Custom officer (alertly)

Employee (fired, not promoted)
II Sparsity and Plausibility of data

- **Sparse data**: Hunting for hints and facts
 (Belief → hints / facts → belief update)

- **Plausibility checks** (cf. Fermi assessment in science)
 - of normative / actual business figures of corporate entities
 - of fiscal income and declared estate with reality and life style of natural persons

- **Rule of Thumb**: Examine appearance and reality
 (Schein and Sein) Weinheim (2011)

Problem: Classify a susceptible as „guilty“ or „not guilty/negligently“
given all discovered facts and background information

Tax fraud = max\{0, excisable income – declared income\}

*) wealth tax excluded
Plausibility of data (cont.)

- **Checks of stocks and flow**
 Ex.: $\text{Inventory}_t = \text{Inventory}_{t-1} + \text{Inflow}_t - \text{Outflow}_t$
 Net Income = 2000 €/m > Penthouse Rent Rate = 1800 €/m

- **Checks based on I/O-Relations**
 (OFD Köln; Erhard & Wenzig 1985)
 Ex.: recorded annual mileage (km/a) of a taxi by speedometer in period t (F);
 mean consumption rate $l/100\text{km}$ of taxi type (v);
 recorded annual fuel consumption in period t, l/a (V)
 Estimate $\hat{V} = F \times v$

- **Checks of (pooled) longitudinal and cross-sectional Data**
 Ex.: Time-Series of annual fuel consumption rates, $(V_t)_{t=1,2,...,n}$

- **Checks** of income difference = excisable income$_t$ - declared income$_t$

- **Alternative (qual.) Checks** Observation of business processes, house to house / room to room or face to face inspection

cf. Lachnit 1992
Fermi assessment

„How many piano tuner in Chicago?"

No of piano tuners in Chicago (AS) = ?

- **Assumption 1**: \(AE = 4.000.000 \) population size citizen
- **Assumption 2**: \(h = 4 \) mean size of households citizen/h
- **Assumption 3**: \(k = 1/5 \) piano density piano/h
 \[
 AK = AE \frac{k}{h} = 200.000 \text{ no of pianos}
 \]
- **Assumption 4**: \(f = \frac{1}{4} \) annual tuning frequency a\(^{-1}\)
 \[
 JLK = f \times AK = 50.000 \text{ annual tuning load piano/a}
 \]
- **Assumption 5**: \(p=4 \) daily tuning productivity piano/d*tuner
- **Assumption 6**: \(AA = 250 \) annual no of working days d/a
 \[
 AS = JLK/(p*AA) = 50 \text{ tuners in Chicago}
 \]

Source: R. Taschner (2013), Die Zahl, die aus der Kälte kam, Hanser Verlag, p 54
III Tax Investigation – step by step (workflow)

- Initial suspicion of Tax Fraud
- Know How of insiders
- preliminary Investigation
- Generate file with reference no
- Tax file request study check
Tax Investigation (cont.)

- Get permission for inquiries and investigations
- face to face Profiling
- lawful Search (flat, house, firm, bank,…)
- Good Practice:
 - one shot
 - surprise
 - completeness
- Tax bill, penalty order, fine

follow-up Investigations

Observation
Tax fraud state space

\[\Theta = R^4_+ \times N_0 \times \{0,1\} \]

\(\theta_1 \): Delinquent tax (€) ! main variable
\(\theta_2 \): Penalty (€)
\(\theta_3 \): Debit interest charge (€)
\(\theta_4 \): Legal Charges (€)
\(\theta_5 \): Imprisonment (m)
\(\theta_6 \): on probation (yes/no: (1/0))

Ex.: Ulli Hoeness, Munich: (28,4 Mio €, ?, ?, ?, 42 m, 0)
Reference Table

of measures of uncertainty

<table>
<thead>
<tr>
<th>Probability 0-100%</th>
<th>Linguistic Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>impossible (excluded)</td>
</tr>
<tr>
<td>5 %</td>
<td>extremely impossible</td>
</tr>
<tr>
<td>10 %</td>
<td>fairly impossible</td>
</tr>
<tr>
<td>30 %</td>
<td>doubtful</td>
</tr>
<tr>
<td>50 %</td>
<td>odds are 1:1 (indifferent)</td>
</tr>
<tr>
<td>75 %</td>
<td>likely</td>
</tr>
<tr>
<td>90 %</td>
<td>almost certain</td>
</tr>
<tr>
<td>95 %</td>
<td>very certain (confident)</td>
</tr>
<tr>
<td>99 %</td>
<td>extremely certain</td>
</tr>
<tr>
<td>100 %</td>
<td>with certainty (totally sure)</td>
</tr>
</tbody>
</table>
IV Investigation Procedures

- Rule based Systems (RBS)
- Case based Reasoning (CBR)
- (social) Network Analysis (sNA)
- Bayesian Learning (BL)
IVa Rule based systems
(KB, FB, H, WHY/HOW)

- \(\text{if } <\text{condition}> \text{ then } <\text{conclusion}> \)
- Predicate logic \(\approx \) Boolean logic (\(\land, \lor, \neg \))
 & variables & constants & quantifiers
- KB Knowledge Base (rule set)
- FB Fact Base (data)
- H Hypothesis (suspicion)
- WHY/HOW self explanation facility
- PROLOG Inference component
Case based reasoning (CBR)

CBR in NL: ~ 150 Business Rules to score Dutch Network of businesses, people, addresses, phone-numbers, bank-accounts etc.

Source: Driessen (2015), Business Intelligence & Analytics, Belastingdienst Netherlands
IVc Network Analysis

by weighted *DiGraphs*

Source: CNM Social Media Module – Giorgos Cheliotis (gcheliotis@nus.edu.sg)
Network Analysis
„Carousel Fraud“ in Netherlands

Data sources:
- VAT-declarations
- client data
 addresses/names etc.
- fraud lists
- communication data

Source R. Driessen (2015): Business Intelligence & Analytics, Belastingdienst Netherlands
Bayesian Learning

Belief $\pi^* = P(\theta^* | x)$ where $\theta^* = \arg \max_{\theta \in \Theta} P(\theta | x)$

- **Prior Information** $P(\theta)$
- **Likelihood** $P(x | \theta)$
- **Bayes Rule** $P(\theta | x) \propto P(x | \theta) P(\theta)$
- **Posterior Information** $P(\theta | x)$
- **TaxInv Database**
- **Feedback Learning**
V Case Studies of Tax Fraud

Case 1: Al Capone 1930, 1931

- **Initial Suspicion**: Covering-up tax fraud by investing illegal revenues in laundries (“Money Laundering”), $\theta_1 = 200,000$ US $\$ \ $ prior Belief= “extremely certain” = $P(\theta_1) \approx 1$

- **Facts** x: Business of illegal gambling (x_{i1}), prostitution (x_{i2}), protection racket (x_{i3}), illegal dealing with alcohol (x_{i4}) observed but NOT provable: $P(\theta_1 | x_{i1},...,x_{i4}) = 0$

- **Assessment**: declared income $\sum E_{T-\tau} < V_T-V_0 \approx \sum_j x_j$ value added wealth in $[0,T]$: $P(\theta_1 | (x_i)_{i=T,T-1,...}) > 99$

- **Punishment**: Tax fine $\$ 50,000, 11 years of jail, legal charges $\$ 8,000 \Rightarrow \theta_{AC}=(?, 50 \ T\$, 0, 8 \ T\$, 132m,0)

Case 2: Burglary

- **Initial Suspicion** (by self report):
 Breaking news of media: Plundering objects d’art and assets in flats and houses and acting as „Beagle Boys“, $\theta_1 >> 0$ prior Belief =“likely”

- **Facts**: Declared total income / wealth deviate strongly from size from declared value of stolen goods, i.e. $x_{\text{Plunder}} >> x_{\text{income}}$ posterior Belief =“confident”

- **Punishment**: Fine ~ (estimated) delinquent tax $\theta = (\bar{\theta}_1 , \bar{\theta}_1 , 0, 0, 0, 0)$

until 1997 wealth tax existed

Case 3: Insurance fraud of a craftsman by feigned burglary

- **Initial Suspicion** (by tax authority): Divergence of after-tax profit of income and value-added taxes with lifestyle of a craftsman (real estate, house, swimming pool, premium class car, …)
 \[\theta_1 \approx 100,000 \text{ DM} \quad \text{prior Belief = “likely”} \]

- **Facts**: File inspection gives hints to black money in hand up to \(\sim 100,000 \text{ DM} \) used for investments, but where? \(x_{(1)} = \text{null} \) updated Belief = “very certain”
Case 3: Insurance fraud (cont.)

- **Inspection:** Executing a search warrant gives evidence of an insurance fraud by a fictitious break-in, \(x(2) = \text{null} \) updated Belief = “extremely certain”

- **Facts:** Follow-up audit of the single entry bookkeeping system initiated by pretending money sources like Arabic creditor, lottery, casino; \(x(3) = \text{null} \) posterior Belief = “extremely certain”

- **Punishment:** Enforceable legal claim on real estate (“dinglicher Arrest”) of 2 Mio DM due to craftsman’s disappearing, suspended sentence and payments of tax arrears summing up to 100.000 DM \(\theta=(100\text{TDM}, 0, 0, 0, 0) \)

Quelle: Wehrheim 20-30 (2011)
Case 4: Business data manipulated by a plumber and heating installer

- **Initial Suspicion** (self-denunciation by the deceived spouse): Missing invoices, (Spouse responsible for bookkeeping, but not subject to prosecution due to self-denunciation (§371 German Law (AO)) $\theta_1 \gg 0$ $P(\theta_1) = 95\%$

- **Facts** (illicit actions):
 - Private acquisitions (antiques, entertainment electronics) and repairs booked as operating costs $x_1 = 300$ TDM $P(\theta_1 \mid x_1) > P(\theta_1)$
 - Depreciation of antiques, fictitious car pool
 - Safe with black money and jewelry, foreign bank account, manipulated accounts, receipts file, notebook with black money entries, $x_2 \approx 90$ TDM $P(\theta_1 \mid x_1, x_2) > P(\theta_1 \mid x_1)$

- **Punishment**: Payment of arrears 500,000 €, fine 280,000 €
 $\theta = (500$ TDM. 280 TDM. 0. 0. 0. 0) Belief = “with certainty”
Case 5: Interception of dental gold

- **First suspicion** (Report by the spouse): The dentist collected dental gold of his patients over years $\theta_1 \approx 100,000$ DM /10 a prior Belief = “doubtful”

- **Facts** and **Assessment** of θ_1: Gold sold at a gold parting factory and paid by crossed checks. No bookkeeping, but money transfer to a bank in CH for later use after retirement. Evidence of a well operated dental surgery with dental lab \rightarrow Assessment of annual revenues $x = N*g = 285*35 \approx 10,000$ DM/a $P(\theta_1 | x) = 0.99$ or posterior Belief =“extremely certain”

- **Punishment**: Assumed 10-years-tax fraud = 10*annual revenues = 100,000 DM $\theta = (100 \ TDM, 100 \ TDM, 0, 0, 0, 0, 0)$

Source: Wehrheim 57 (2011)
Case 6: Tax saving at a doctor’s surgery

- **Initial Suspicion** (by a excise officer)
 Profitable doctor’s office + rents from inherited houses.
 His spouse manages bookkeeping.
 \(\theta_1 = 0 \text{ DM} \) prior Belief =“1:1 odds”

- **Facts**: Tax inspector confirms annual tax balance sheet and profit and loss account. Examining single bookkeeping transactions of the last year he detects transposed digits. Addition gives an annual difference \(x_t = 45.000 \text{ DM} \) (149.000 instead of 194.000)
 updated Belief = “likely”

- Audit of the last eight years
 Update of suspicion: \(\theta_1 >> 45.000 \text{ DM} \) Belief =“extremely certain”

- **Punishment**: Payment of arrears 450 TDM; no fine although digits transposed with intent. But intention / negligence difficult to discriminate
 \(\theta = (450 \text{ TDM}, 0,0,0,0,0) \)

Source: Wehrheim 95 (2011)
Case 7: Subsidy fraud construction machine manufacturer

- **First suspicion** (by excise officer)
 Subsidy fraud when selling construction machines outside the limited subsidy period.
 \[\theta_1 \approx c \times 15 \text{ TDM} \quad (c>0) \quad \text{Belief} = \text{“almost certain”} \]

- **Facts** (confessed by bookkeeper): During audits n excise officer detects two kind of identifiers of invoices:
 1. The values of the sales invoice identifier are sequenced
 2. Invoices backdated to the period of subsidy have the extra label A, B, C,...
 \[x_1 = 20 \times 15000 = 300 \text{ TDM} \quad \text{Belief} = \text{“totally sure”} \]

- **Punishment**: Payment of arrears 300 TDM and fine 30 TDM
 \[\theta = (300 \text{ TDM}, 300 \text{ TDM}, 0, 0, 0, 0) \]
Moral of Tax Fraud

- No tax fraudster is able to create a world of facts and figures without any contradiction.

- Truth will come out.

- “In the long run we get all of them.“

 F. Wehrheim (2011)
Data Fraud is no trivial offense